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Abstract The electrooxidation of benzylamine, 2-phen-

ylethylamine and 4-hydroxyphenylethylamine (tyramine)

at a gold electrode in contact with an alkaline electrolyte

solution was studied. The effect of amine concentration,

electrolyte pH and potential scan rate on the electrooxi-

dation was analysed. The adsorption of amines on the gold-

solution interface was found to play a significant role in the

oxidation mechanism. The rate determining step was the

heterogeneous dehydrogenation of the amine molecule,

involving electron transfer to the gold electrode and the

formation of a water molecule. The catalytic effect of the

gold electrode on both benzylamine and 2-phenylethyl-

amine oxidation is higher than that for tyramine.
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1 Introduction

A detailed knowledge of the electrochemical behaviour of

organic compounds is of primary importance for develop-

ment of appropriate sensors and for advanced electrochemical

synthesis. Numerous studies deal with electrocatalytic oxi-

dation of organics on noble metals. An effective catalyst in

electrochemical oxidation of organic substances should have

the following properties: (i) the energy of adsorption of sub-

strate molecules and/or intermediate species formed on the

catalysts surface should be sufficiently high to substantially

decrease the activation energy for the dehydrogenation step,

but sufficiently low for the intermediate and final products to

desorb easily, and (ii) the energy released by formation of

water molecules as one of the reaction products should be

sufficient to compensate for the energy needed for desorption

of dehydrogenated organic intermediates from the metal

surface. Among noble metals gold and platinum are the most

active and most often used electrocatalysts. Gold stands out

because of its good electrocatalytic activity in alkaline envi-

ronments [1–14], whereas platinum is the most active in acid

[15, 16]. Oxidation of organic substances at platinum is

accompanied by a characteristic, though very undesirable,

effect of surface blocking by strongly adsorbed intermediate

species [16]. This effect does not apply to gold which has no

vacancy in its d-bands and thus is characterized by relatively

poor adsorption properties [17–24] as compared with plati-

num. Though these adsorption properties of gold account

for its weak catalytic activity in acid solution, in alkaline

solutions, when hydroxide ions adsorb on the gold surface

[12, 25–34], gold proves to be a more effective catalyst for

dehydrogenation of organic compounds than platinum.

The organic compounds selected for the study presented

here are aliphatic amines. They have been widely used as

starting or intermediate agents in the production of various

other chemical compounds. Amines have found application

in different branches of industry, agriculture and pharma-

cology [35, 36]. Most of them are toxic; thus their monitoring

and detection are of great significance in environmental

protection [35]. The literature gives rather scarce experi-

mental evidence for the electrochemical behaviour of

aliphatic amines. For gold, it has been established that

oxidation of ethylamine in alkaline media occurs concomi-

tantly with gold oxide formation [37–40]. More recently,

relationships between the adsorption properties and elect-

rocatalytic oxidation of a homologous series of aliphatic
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amines ranging from methylamine to butylamine have been

evaluated and discussed [41–46]. The effect of molecular

structure on isomeric butylamines has been analysed [47].

This article deals with the electrochemical behaviour

of aliphatic amines with aromatic substituent: benzylamine,

2-phenylethylamine and 4-hydroxyphenylethylamine (tyra-

mine) at the gold electrode in aqueous solution.

Phenyletylamines (derivatives of 2-phenylethylamine) exist

in biological systems as alkaloids and hormones [35, 36].

They play an important role in brain chemistry because some

of them are neurotransmitters in the mammalian central

nervous system [48]. Thus better understanding of different

properties of these amines is of particular importance from

both fundamental and practical points of view.

2 Experimental

Electrochemical studies were performed in a conventional

three-electrode cell using a gold bead (99.999% purity) of

0.3 cm2 geometric area as a working electrode and a gold

sheet as a counter-electrode. A hydrogen electrode (RHE)

in the supporting electrolyte solution as proposed by Will

et al. [49, 50] was used as a reference electrode. For

comparison with published data, all the potentials are given

versus the saturated calomel electrode (SCE).

The solutions were prepared using water purified in a Mil-

lipore Milli-Q system, benzylamine, 2-phenylethylamine and

4-hydroxyphenylethylamine (tyramine) of Fluka, NaOH and

NaClO4 of Merck. All chemicals were analytical reagent grade

and were used without further purification. The electrochem-

ical measurements were carried out at 295 K. All solutions

under investigation were deaerated with high purity argon.

The apparatus used to record cyclic voltammograms (j–E

curves) and differential capacitance of the electrical double

layer versus electrode potential curves (C–E) was described

earlier [6]. The C–E curves were obtained by superimposing

an ac sinusoidal voltage signal (15 s–1, 0.005 V) on a slow

linear electrode potential scan (dE/dt = 0.005 V s–1). A

slower scan rate of 0.002 V s–1 did not affect the C–E curves

observed. Stirring of the solutions had no effect on the course

of the C–E curves, which indicated that the mass transport did

not limit the rate of adsorption–desorption processes of amine

at the bulk concentrations studied. The equilibrium of the

adsorption–desorption was checked at different frequencies.

For frequencies in the range 5–40 s–1 no frequency dispersion

of the differential capacity was observed in the potential

range –0.95 V \ E \ 0.1 V and –0.95 V \ E \ 0.05 V in

0.1 mol dm–3 NaOH and 0.02 mol dm–3 NaClO4, respec-

tively. These potential ranges narrow in the presence of

amines in the supporting electrolyte to –0.4 V \ E \ 0.1 V

in NaOH and to –0.4 V \ E \ 0.05 V in NaClO4 at all the

adsorbates concentrations studied. These findings confirm

that the differential capacity data in the above-mentioned

potential range can be considered at equilibrium.

Prior to each series of measurements with amines, the

working electrode was electrochemically activated by

cycling (dE/dt = 0.1 V s–1) in the potential range between

where no faradaic reactions occur on the gold surface. This

procedure avoids structural changes on the gold surface.

3 Results and discussion

Comprehensive recognition of the adsorption phenomena at

electrified interfaces is of the utmost importance for

understanding of the mechanisms of reactions in electroca-

talysis. The representative set of the C–E curves in

0.1 mol dm–3 NaOH as supporting electrolyte and at dif-

ferent concentration of benzylamine, phenylethylamine and

tyramine shown in Fig. 1 demonstrates the adsorption of

amines under investigation.
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Fig. 1 Differential capacitance versus potential for the gold electrode

in 0.1 mol dm–3 NaOH (curve 1–10) with increasing benzylamine

(m) concentration; (2) 0.00001 mol dm–3; (3) 0.005 mol dm–3; (4)

0.05 mol dm–3 and with increasing phenylethylamine (j) concentra-

tion; (5) 0.00001 mol dm–3; (6) 0.005 mol dm–3; (7) 0.035 mol dm–3

and with increasing tyramine (d) concentration; (8) 0.00001 mol dm–3;

(9) 0.005 mol dm–3; (10) 0.02 mol dm–3. dE/dt = 0.005 V s–1
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A gradual suppression of the capacitance curves with

increasing bulk amine concentration in the electrolyte takes

place in the potential range of the characteristic minimum in

the vicinity of the potential of zero charge (Epzc) of the gold

electrode [51–54] and of the adsorption–desorption maxi-

mum on the negatively charged surface. This behaviour is

clear evidence for the substitution of water with amine

molecules at the gold surface. Relatively strong adsorption of

the solute on gold is manifested by the fact that the C–E

curves for the highest amine concentrations do not merge at

the negative potential limit with the corresponding C–E

curve for supporting electrolyte solution. This proves that

some adsorbate molecules remain at the gold surface.

Analysis of relationships between the surface coverage,

H = (CH = 0 – CH)/(CH = 0 – CH = 1) (where: CH = 0, CH = 1

and CH represent differential capacitance of the double layer

at H = 0, H = 1 and at intermediate coverages (0 \H\ 1),

respectively) and the amine concentration, cA suggests

increasingly stronger interaction of organic molecules

with the gold electrode in the following sequence:

benzyloamine \ phenylethylamine \ tyramine. The surface

coverage for the same bulk amine concentration at chosen E is

the highest for tyramine (Fig. 2). The concentration respon-

sible for H = 1 decreases in the same order. The minimum

differential capacitance (CH = 1) is reached at 0.05 mol dm–3,

at 0.035 mol dm–3 and at 0.02 mol dm–3 for benzylamine,

phenylethylamine and for tyramine, respectively.

It should be emphasised that the potential range in

which the amine molecules are adsorbed on the gold-

alkaline solution interface coincides with that in which the

adsorption of hydroxyl ions occurs [12, 20, 27, 28, 55].

Thus a quantitative evaluation of the C–E curves in this

medium is not possible because of the competing adsorp-

tion of amine and hydroxyl ions at the electrode surface

and only qualitative information about the relative ad-

sorptivity of the system can be obtained. Therefore,

additional measurements of differential capacitance with a

non-adsorbing supporting electrolyte, 0.02 mol dm–3

NaClO4 [51], have been made. The results reveal that the

potential range of the amine adsorption, as measured with

respect to Epzc, does not change with electrolyte pH.

It has been established that the dependence of the

surface coverage (H) on the bulk amine concentration in

the proximity of the potential of zero charge of the gold

electrode can be represented by the Frumkin isotherm

½H=ð1�HÞ� exp�2aH ¼ bc [56] where: ‘‘a’’ stands for the

lateral interaction parameter and b is the adsorption

equilibrium constant. Figure 3 shows the ½ln c� ln

H=ð1�HÞ� vs. H isotherm plot resulting from analysis of

the C–E curves at the potential of maximum adsorption,

Emax = –0.3 V versus SCE determined from the relation-

ships between DC ¼ CH¼0 � CH versus E for given

solutes concentration.

Taking as the reference state the unit mole fraction of

amine in the bulk of the solution and a monolayer

coverage (H = 1) of the non-interacting adsorbate mol-

ecules at the surface [21, 24, 57–60], b is related to

the standard Gibbs energy of adsorption DG0
ad by the

following relationship: b ¼ ½ð1=55:5Þ expð�DG0
ad=RTÞ�.

The corresponding values of DG0
ad change in the

sequence: benzylamine (DG0
ad = –40.0 ± 0.05 kJ mol–1

[61]) \phenylethylamine (DG0
ad = –42.7 ± 0.04 kJ mol–1)

\tyramine (DG0
ad = –46.0 ± 0.06 kJ mol–1), reflecting the

stronger interaction between the amine molecule and the

electrode surface. The amine molecules are able to form

surface complexes by coordinative interaction between

the electrode surface and the electron lone pair at the

nitrogen atom and tyramine is moreover able to interact

with gold by lone electron pairs localized at the oxygen

atom.

Figure 4 shows the cyclic voltammograms recorded at

the gold electrode in the supporting electrolyte, 0.1 mol

dm–3 NaOH alone, and in the presence of 0.005 mol dm–3
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Fig. 2 Dependence of the gold electrode coverage on the amine

concentrations in 0.1 mol dm–3 NaOH at E = –0.25 V versus SCE

for: benzylamine (m), phenylethylamine (j) and tyramine (d).

dE/dt = 0.005 V s–1
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benzylamine, phenylethylamine and tyramine. A well-

defined anodic peak at E = 0.33 V and a cathodic peak at

E = 0.15 V visible in the j–E curve of the bare electrode

are assigned to the gold oxide formation and to its reduc-

tion, respectively [55]. As follows from the cyclic

voltammograms, aliphatic amines are inactive at the gold

electrode potentials below E & –0.1 V. Their oxidation

proceeds irreversibly only in parallel with gold oxide for-

mation and the anodic peaks with maxima at E = 0.43 V,

E = 0.38 V and E = 0.45 V appear on the cyclic voltam-

mograms for benzylamine, phenylethylamine and

tyramine, respectively.

When comparing the response of the gold electrode in

supporting electrolyte solution with those in the presence

of amines, it is evident that the charge used for the

reduction of gold oxide in the presence of amines is smaller

than that in solution without solute. This points to partic-

ipation of gold oxide in the oxidation of amines. The same

conclusion was drawn for aliphatic amines without

aromatic substituent [45–47] and for methanol oxidation on

the polycrystalline gold electrode [52, 62].

For all the amines studied a characteristic feature is an

increase in the anodic current density with increasing

concentration. As an example, the cyclic voltammograms

recorded in the presence of benzylamine of concentration

ranging from 0.0001 mol dm–3 to 0.005 mol dm–3 are

presented in Fig. 5. In the positive scan of potential the

maximum in the oxidation peaks shifts positively when the

bulk amine concentration increases. Such a shift is typical

of reactions involving molecules adsorbed on the electrode

surface. An increase in the amine coverage generates a

decrease in the gold oxide coverage. This conclusion is

supported by the fact that any increase in the anodic peak is

accompanied by a decrease in the cathodic peak.

The similarity in the shape of the cyclic voltammograms

for the compounds investigated is a result of the similarity

of their molecular structure. An increase in the carbon

chain length of the organic molecule (benzylamine and

phenylethylamine) is accompanied by an increase in the
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Fig. 3 Test of the Frumkin isotherm for amines adsorbed at

Emax = –0.3 V versus SCE on gold electrode in 0.02 mol dm–3

NaClO4 for: benzylamine (m), phenylethylamine (j) and tyramine

(d). dE/dt = 0.005 V s–1
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Fig. 4 Cyclic voltammograms of gold electrode in 0.1 mol dm–3

NaOH (x) and with 0.005 mol dm–3 of: benzylamine (m); phenyl-

ethylamine (j) and tyramine (d). dE/dt = 0.1 V s–1
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electrochemical activity of the amine. This effect is

significantly higher when compared with that observed

for methylamine and ethylamine [45, 46]. This may be a

consequence of the greater standard Gibbs energy of

adsorption for amines with an aromatic ring then for those

without such a substituent [41–44]. The smaller current

density observed for tyramine, having the same carbon

chain as phenylethylamine, must be a consequence of the

presence of the hydroxyl group in the aromatic ring of the

tyramine molecule which is able to interact with the gold

surface besides the NH2 group. This possibility may be

responsible for blocking the electrode surface for further

substrate adsorption and oxidation. The low level fouling

of the electrode surface by tyramine molecules was con-

firmed in a separate experiment in which the electrode was

cycled in solution with this amine, then rinsed and dipped

in fresh supporting electrolyte. The resulting voltammo-

grams showed a tyramine oxidation peak, which

disappeared after the third scan. Similar measurements

with both benzylamine and phenylethylamine did not show

any traces of them at the electrode after transfer to pure

electrolyte.

For all amines studied the oxidation peak potential

shifts positively with increasing sweep rate, confirming

the irreversibility of the electrocatalytic process. The log

jp versus log v plots (Fig. 6) are linear with an average

slope of d log jp=d log v of 0.81 ± 0.01, 0.82 ± 0.01 and

0.71 ± 0.01 for benzylamine, phenylethylamine and tyra-

mine, respectively. The magnitudes of this parameter may

indicate a mixed, i.e. diffusion-adsorption rate control

[63].

In order to get information on the rate determining step

of amine oxidation, Tafel analysis of voltammograms was

made. The slopes, dE=d log j ¼ 2.303RT=anF of the linear

parts of the plots in log j–E coordinates (Fig. 7) in the

potential range –0.05 V and 0.2 V for both benzylamine

and phenylethylamine and between 0.1 V and 0.3 V for

tyramine give values of 0.270 ± 0.002 V, 0.260 ± 0.003

and 0.210 ± 0.003 V per decade of current density for

0.001 mol dm–3 benzylamine, phenylethylamine and tyra-

mine, respectively. The change in potential sweep rate did

not alter the Tafel slopes significantly. Moreover, the
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Fig. 5 Cyclic voltammograms of gold electrode in 0.1 mol dm–3

NaOH (x) and with benzylamine: 0.0001 mol dm–3 of (m); 0.001 mol

dm–3 (j) and 0.005 mol dm–3 (d). dE/dt = 0.1 V s–1
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Fig. 6 The logarithm of peak current density versus the logarithm of

potential sweep rate for benzylamine of (m) 0.001 mol dm–3 and (4)

0.01 mol dm–3; for phenylethylamine of (j) 0.001 mol dm–3 and

(h) 0.01 mol dm–3 and for tyramine of (d) 0.001 mol dm–3 and (o)

0.01 mol dm–3 on gold electrode in 0.1 mol dm–3 NaOH
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dE/log j slopes increase somewhat with increasing amine

concentration. The electron transfer coefficient, a, derived

from the Tafel slopes, lower than 0.5 for all the amines

examined, support the assumption of an adsorption step

preceding the first electron transfer step determining the

overall reaction rate. Further steps proceed so fast that they

have no influence on the rate of the process considered.

The decisive role of the adsorption steps in the

kinetics of aliphatic amine electrooxidation on gold is

indicated by the fractional reaction order with respect to

the substrate concentration, zA. Figure 8 displays the plots

of the logarithm of current density versus the logarithm

of substrate concentration at a constant electrode potential

of 0.05 V for benzylamine and phenylethylamine and of

0.2 V for tyramine. The slope of the straight lines of the

appropriate log j–log cA relationships gives the reaction

order, zA ¼ dj=dcA which in the concentration range

between 0.0005 mol dm–3 and 0.02 mol dm–3 is equal to

0.22 ± 0.01 for benzylamine, 0.20 ± 0.01 for phenyleth-

ylamine and 0.20 ± 0.02 for tyramine. zA increases

insignificantly with decreasing potential sweep rate

(Fig. 9).

Finally, analysis of the variation of the peak potential Ep

with electrolyte pH shows that during the electrode pro-

cess, not only electrons, but also protons are released from

the organic molecules. The peak potentials shift linearly to

less positive potentials with increasing pH. The linear

regression obtained from pH = 11 to pH = 13.3 showed a

slope close to 0.06 V per unit pH for all the amines. The

magnitude of the dEp=dpH slope suggests that the number

of electrons transferred is equal to that of protons taking

part in the electrooxidation reaction.

Thus the possible reaction pathways for benzylamine,

phenylethylamine and tyramine oxidation on gold in

alkaline solution can be proposed as shown in Scheme 1.

The possible reaction pathways for benzylamine and
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Fig. 7 Dependence of current density on gold electrode potential in

0.1 mol dm–3 NaOH for: 0.001 mol dm–3 benzylamine: dE/dt = 0.1

V s–1 (m) and dE/dt = 0.01 V s–1 (4); for 0.001 mol dm–3 phenyl-

ethylamine: dE/dt = 0.1 V s–1 (j) and dE/dt = 0.01 V s–1 (h)

and for 0.001 mol dm–3 tyramine: dE/dt = 0.1 V s–1 (d) and dE/

dt = 0.01 V s–1 (�)
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Fig. 8 Dependence of the current density on the amine concentra-

tions in 0.1 mol dm–3 NaOH at E = 0.05 V versus SCE for

benzylamine: dE/dt = 0.1 V s–1 (m) and dE/dt = 0.01 V s–1 (4); at

E = 0.05 V versus SCE for phenylethylamine: dE/dt = 0.1 V s–1 (j)

and dE/dt = 0.01 V s–1 (h) and at E = 0.2 V versus SCE for

tyramine: dE/dt = 0.1 V s–1 (d) and dE/dt = 0.01 V s–1 (�)
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phenylethylamine oxidation (Scheme 1) involve the first

electron transfer connected with the oxidation of the

hydrogen atom abstracted from the NH2 group of an

adsorbed amine molecule as the reaction rate determining

step. The resulting imines are then either oxidized to the

respective nitriles or, after imine hydrolysis, ammonium

and the respective aldehydes may be produced. The sub-

sequent oxidation of the latter products to the respective

acids can be ruled out because in such a case the value of

dEp=dpH should be different from 0.06 V per unit pH. The

same conclusion holds for tyramine. However, for tyra-

mine, the -OH group linked to the aromatic ring is

irreversibly oxidized before the oxidation of the NH2

group. As a result the iminoketone is formed. This blocks

the electrode surface which, besides stronger interactions

with the metal, is probably the reason for the lowest current

density obtained on gold during tyramine oxidation as

compared with those observed for benzylamine and

phenylethylamine.
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